Is the curvature of the flagellum involved in the apparent cooperativity of the dynein arms along the "9+2" axoneme?

نویسندگان

  • Christian Cibert
  • Andrei Ludu
چکیده

In a recent study [Cibert, 2008. Journal of Theoretical Biology 253, 74-89], by assuming that walls of microtubules are involved in cyclic compression/dilation equilibriums as a consequence of cyclic curvature of the axoneme, it was proposed that local adjustments of spatial frequencies of both dynein arms and beta-tubulin monomers facing series create propagation of joint probability waves of interaction (JPI) between these two necessary partners. Modeling the occurrence of these probable interactions along the entire length of an axoneme between each outer doublet pair (without programming any cooperative dialog between molecular complexes) and the cyclic attachment of two facing partners, we show that such constituted active couples are clustered. Along a cluster the dynein arms exhibit a small phase shift with respect to the order according to which they began their cycle after being linked to a beta-tubulin monomer. The number of couples included in these clusters depends on the probability of interaction between the dynein arms and the beta-tubulin, on the location of the outer doublet pairs around the axonemal cylinder, and on the local bending of the axoneme; around the axonemal cylinder, the faster and the larger the sliding, the shorter the clusters. This mechanism could be involved in the apparent cooperativity of molecular motors and the beta-tubulin monomers, since it is partially controlled by local curvature, and the cluster length is inversely proportional to the sliding activity of the outer doublet pairs they link.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bending of the "9+2" axoneme analyzed by the finite element method.

Many data demonstrate that the regulation of the bending polarity of the "9+2" axoneme is supported by the curvature itself, making the internal constraints central in this process, adjusting either the physical characteristics of the machinery or the activity of the enzymes involved in different pathways. Among them, the very integrated Geometric Clutch model founds this regulation on the conv...

متن کامل

Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.

Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet...

متن کامل

Ni2+ inhibition induces asymmetry in axonemal functioning and bend initiation of bull sperm.

Bull sperm extracted with 0.1% Triton X-100 can be reactivated to full motility with 0.33 mM Mg-ATP (sperm models). When motile sperm models are treated with 0.66 mM NiSO4, spontaneous motility is lost. During the transition to motility arrest, the beat becomes progressively more asymmetric, finally arresting at one extreme of the beat cycle. After spontaneous motility has been lost, the flagel...

متن کامل

Conserved and specific functions of axoneme components in trypanosome motility.

The Trypanosoma brucei flagellum is unusual as it is attached along the cell body and contains, in addition to an apparently conventional axoneme, a structure called the paraflagellar rod, which is essential for cell motility. Here, we investigated flagellum behaviour in normal and mutant trypanosome cell lines where expression of genes encoding various axoneme proteins (PF16, PF20, DNAI1, LC2)...

متن کامل

Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes

To understand mechanisms of regulation of dynein activity along and around the axoneme we further characterized the "dynein regulatory complex" (drc). The lack of some axonemal proteins, which together are referred to as drc, causes the suppression of flagellar paralysis of radial spoke and central pair mutants. The drc is also an adapter involved in the ATP-insensitive binding of I2 and I3 inn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 265 2  شماره 

صفحات  -

تاریخ انتشار 2010